Acta Crystallographica Section E
Structure Reports
Online
ISSN 1600-5368
P. G. Aravindan, ${ }^{\text {a }}$ M. Yogavel, ${ }^{\text {a }}$ D. Velmurugan, ${ }^{\text {a }}$ P. Murugan, ${ }^{\text {b }}$ S. Shanmuga Sundara Raj ${ }^{\mathrm{c}}$ and H.-K. Fun ${ }^{\text {d }}$
${ }^{\text {a }}$ Department of Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, ${ }^{\text {b }}$ Department of Organic
Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India, ${ }^{\text {B }}$ B3121 Medical Centre North, Department of MedicineNephrology, Nashville, USA, and ${ }^{\text {d X }}$-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia

Correspondence e-mail: d_velu@yahoo.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.051$
$w R$ factor $=0.146$
Data-to-parameter ratio $=18.5$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

3,3,6,6-Tetramethyl-9-(4-pyridyl)-3,4,6,7,9,10-hexahydro-1,8(2H,5H)acridinedione monohydrate

In the acridine moiety of the title compound, $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$, the central dihydropyridine ring adopts a flattened boat conformation, while the outer cyclohexene rings adopt sofa conformations. In the crystal structure, $\mathrm{N}-$ $\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds involving the water molecule and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds link the inversionrelated molecules to form layers parallel to the (011) plane. Adjacent layers are linked by $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds involving the water molecule.

Comment

Acridine derivatives exhibit a wide range of biological activities, especially mutagenic, antitumour (Talacki et al., 1974) and anti-amoebic activities (Prasad Krishna et al., 1984). Acridine-containing drugs have been found to posses antiprotozoal activity (Karolak-Wojciechowska et al., 1996) and are used for the treatment of Alzheimer's disease (Bandoli et al., 1994). The ability of acridine to intercalate between the base pairs of DNA is well known (Neidle, 1979; Fan et al., 1997). Substituted hexahydroacridine-1,8-dione, which resembles K-channel openers, relaxes KCl -preconcentrated urinary-bladder smooth muscle in vitro (Li et al., 1996; Trivedi et al., 1995). Acridine-1,8-diones exhibit fluorescence and laser activities (Selladurai et al., 1990). Acridinediones were found to lase around 475-495 nm (Murugan et al., 1998). The present study of the title compound, (I), is part of a series of investigations on the crystal structures of acridinedione derivatives.

(I)

In the acridine moiety, the central pyridine ring (B) adopts a flattened boat conformation, while the outer rings (A and C) adopt sofa conformations as confirmed by the total puckering amplitudes (Cremer \& Pople, 1975) $\left[\mathrm{Q}_{T}=0.470\right.$ (2), 0.144 (2) and 0.469 (2) \AA for rings A, B and C, respectively] and the asymmetry parameters (Nardelli, 1983) [$\Delta_{S}(\mathrm{C} 1 A)=0.032$ (1), $\Delta_{S}(\mathrm{C} 9)=0.007(1)$ and $\Delta_{S}(\mathrm{C} 1 A-\mathrm{C} 4 A)=0.021(1), \Delta_{S}(\mathrm{C} 6)=$ 0.001 (1) for rings A, B and C, respectively]. The puckering of ring B is quite small, owing to the π conjugation in the $\mathrm{C} 1 A-$ $\mathrm{C} 4 A-\mathrm{N} 10-\mathrm{C} 5 A-\mathrm{C} 8 A$ system, as indicated by the bond distances: $\mathrm{C} 1 A-\mathrm{C} 4 A=1.360$ (2), $\mathrm{C} 4 A-\mathrm{N} 10=1.366$ (2), $\mathrm{N} 10-\mathrm{C} 5 A=1.377$ (2) and $\mathrm{C} 5 A-\mathrm{C} 8 A=1.357$ (2) A.. Similar features have also been observed in other acridinedione

Received 31 March 2003
Accepted 8 April 2003
Online 23 April 2003

Figure 1
The molecular structure of title compound, showing 35% probability displacement ellipsoids.

Figure 2
A view of the hydrogen-bonding network involving the water molecules [symmetry codes: (i) $1-x, 1-y, 1-z$; (ii) $1-x,-y, 1-z$; (iii) $-x$, $1-y, 1-z]$. For clarity, H atoms not involved in hydrogen bonding have been omitted.
analogues (Gunasekaran et al., 1997; Ganesh, Banumathi et al., 1998; Ganesh et al., 1999; Sankaranarayanan et al., 1998). The $\mathrm{C} 4 A-\mathrm{C} 1 A-\mathrm{C} 9-\mathrm{C} 15$ torsion angle of 111.8 (2) ${ }^{\circ}$ shows that the pyridyl ring (D) is axial to the acridine moiety. The acridine moiety is folded about the line passing through atoms C 9 and N 10 , as seen from the dihedral angle of $14.38(3)^{\circ}$ between the $\mathrm{C} 1 / \mathrm{C} 2 / \mathrm{C} 4 / \mathrm{C} 4 A / \mathrm{N} 10 / \mathrm{C} 9 / \mathrm{C} 1 A$ and $\mathrm{C} 5 / \mathrm{C} 7 / \mathrm{C} 8 / \mathrm{C} 8 A /$ C9/N10/C5A planes. The folding of the acridine moiety about the C9...N10 line is well documented (Ganesh, Velmurugan et al., 1998; Ganesh, Banumathi et al., 1998; Ganesh et al., 1999;

Sankaranarayanan et al., 1998, 1999; Jeyakanthan et al., 2000, 2002). The sum of the bond angles around N 10 [359.3 (1) ${ }^{\circ}$] indicates $s p^{2}$ hybridization. In ring B, the $\mathrm{C}-\mathrm{N}$ bond lengths (Table 1) are in agreement with the mean $\mathrm{Csp}{ }^{2}-\mathrm{Nsp}^{2}$ bond length of 1.355 (14) Å reported by Allen et al. (1987).

The hydrogen-bonding network involving the water molecules is shown in Fig. 2. The water molecules take part in $\mathrm{O}-$ $\mathrm{H} \cdots \mathrm{O}, \mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds. The $\mathrm{N} 10-$ $\mathrm{H} 10 \cdots \mathrm{O} 1 W^{\mathrm{i}}, \mathrm{O} 1 W-\mathrm{H} 2 W \cdots \mathrm{O} 1^{\mathrm{iii}}, \mathrm{C} 11-\mathrm{H} 11 B \cdots \mathrm{O} 1^{\mathrm{iii}}$ and $\mathrm{C} 17-\mathrm{H} 17 \cdots \mathrm{O} 2^{\text {iv }}$ (symmetry codes as in Table 2) hydrogen bonds link the inversion-related molecules to form layers parallel to the (011) plane. Adjacent layers are linked by $\mathrm{O} 1 W-\mathrm{H} 1 W \cdots \mathrm{~N} 18^{\text {ii }}$ hydrogen bonds.

Experimental

To dimedone ($0.75 \mathrm{~g}, 5.3 \mathrm{mmol}$) and pyridine-4-carboxaldehyde ($0.28 \mathrm{~g}, 2.6 \mathrm{mmol}$) in ethanol was added ammonia (excess) and the mixture was refluxed for 8 h to afford the title compound. Single crystals were grown by slow evaporation from a solution in chloro-form-methanol (1:1).

Crystal data

$\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{2} \cdot \mathrm{H}_{2} \mathrm{O} \quad Z=2$
$M_{r}=368.46$
Triclinic, $P \overline{1}$
$a=9.1333$ (5) Å
$b=9.8999$ (5) \AA
$c=12.0435(7) \AA$
$\alpha=74.876(1)^{\circ}$
$\beta=81.705(1)^{\circ}$
$\gamma=73.137(1)^{\circ}$
$V=1003.26(9) \AA^{3}$
$D_{x}=1.220 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 3984 reflections
$\theta=1.8-28.3^{\circ}$
$\mu=0.08 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Plate, yellow
$0.48 \times 0.26 \times 0.12 \mathrm{~mm}$

Data collection

Siemens SMART CCD areadetector diffractometer ω scans
7019 measured reflections 4804 independent reflections 3516 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.051$
$w R\left(F^{2}\right)=0.146$
$S=1.03$
4804 reflections
260 parameters
H atoms treated by a mixture of independent and constrained refinement
$R_{\text {int }}=0.022$
$\theta_{\text {max }}=28.3^{\circ}$
$h=-12 \rightarrow 12$
$k=-13 \rightarrow 12$
$l=-13 \rightarrow 16$

$$
\begin{aligned}
& w=1 /[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0728 P)^{2} \\
&+0.1035 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.23 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.19 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1

Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$.

O1-C1	$1.2352(18)$	$\mathrm{C} 9-\mathrm{C} 15$	$1.531(2)$
O2-C8	$1.2255(19)$	$\mathrm{C} 17-\mathrm{N} 18$	$1.333(2)$
C4 $A-\mathrm{N} 10$	$1.3660(17)$	$\mathrm{N} 18-\mathrm{C} 19$	$1.328(2)$
C5 $A-\mathrm{N} 10$	$1.3774(18)$		
			$116.01(15)$
$\mathrm{C} 4 A-\mathrm{N} 10-\mathrm{C} 5 A$	$121.49(12)$	$\mathrm{C} 19-\mathrm{N} 18-\mathrm{C} 17$	
			$-100.75(16)$
C1 $A-\mathrm{C} 9-\mathrm{C} 15-\mathrm{C} 20$	$-43.72(19)$	$\mathrm{C} 8 A-\mathrm{C} 9-\mathrm{C} 15-\mathrm{C} 16$	
C1 $A-\mathrm{C} 9-\mathrm{C} 15-\mathrm{C} 16$	$135.57(14)$		

Table 2
Hydrogen-bonding geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{N} 10-\mathrm{H} 10 \cdots \mathrm{O} 1 W^{\text {i }}$	0.93 (2)	1.87 (2)	2.799 (2)	174 (2)
$\mathrm{O} 1 W-\mathrm{H} 1 W \cdots \mathrm{~N} 18{ }^{\text {ii }}$	0.91 (3)	1.96 (3)	2.869 (2)	179 (2)
$\mathrm{O} 1 W-\mathrm{H} 2 W \cdots \mathrm{O} 1^{\text {iii }}$	0.85 (3)	2.06 (3)	2.902 (2)	175 (2)
$\mathrm{C} 11-\mathrm{H} 11 B \cdots \mathrm{O} 1^{\text {iii }}$	0.96	2.47	3.326 (2)	149
$\mathrm{C} 17-\mathrm{H} 17 \cdots \mathrm{O} 2^{\text {iv }}$	0.93	2.44	3.366 (2)	172

Symmetry codes: (i) $-x, 1-y, 1-z$; (ii) $1-x,-y, 1-z$; (iii) $1-x, 1-y, 1-z$; (iv) $1-x,-y, 2-z$.

Atoms $\mathrm{H} 10, \mathrm{H} 1 W$ and $\mathrm{H} 2 W$ were located from a difference Fourier map and refined isotropically; the remaining H atoms were fixed geometrically and allowed to ride on their attached atoms. For the refined H atoms, the $\mathrm{O}-\mathrm{H}$ distances are 0.85 (3) and 0.91 (3) \AA, and the $\mathrm{N}-\mathrm{H}$ distance is 0.93 (2) \AA. Rotating-group refinement was used for the methyl groups.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ZORTEP (Zsolnai, 1997) and PLATON (Spek, 1990); software used to prepare material for publication: SHELXL97 and PARST (Nardelli, 1995).

Financial support from the Department of Science and Technology (DST) and the University Grants Commission (UGC), Government of India, are gratefully acknowledged.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Bandoli, G., Dolmella, A., Gatto, S. \& Nicolini, M. (1994). J. Chem. Crystallogr. 24, 301-310.
Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Fan, J.-Y., Tercel, M. \& Denny, W. A. (1997). Anti-Cancer Drug Res. 12, 277293.

Ganesh, V. K., Banumathi, S., Velmurugan, D., Ramasubbu, N. \& Ramakrishnan, V. T. (1998). Acta Cryst. C54, 633-635.
Ganesh, V. K., Banumathi, S., Velmurugan, D. \& Ravikumar, K. (1999). Cryst. Res. Technol. 34, 929-934.
Ganesh, V. K., Velmurugan, D., Bidya Sagar, M. \& Murugan, P. (1998). Acta Cryst. C54, 557-559.
Gunasekaran, K., Velmurugan, D. \& Murugan, P. (1997). Acta Cryst. C53, 1512-1514.
Jeyakanthan, J., Shanmuga Sundara Raj, S., Velmurugan, D., Fun, H.-K., Joseph Rajan, T. \& Ramakrishnan, V. T. (2000). Acta Cryst. C56, 1109-1112.
Jeyakanthan, J., Yogavel, M., Joseph Rajan, T., Velmurugan, D. \& Sekar, K. (2002). Cryst. Res. Technol. 37, 1029-1037.

Karolak-Wojciechowska, J., Morzek, A., Amiel, P., Brouant, P. \& Barbe, J. (1996). Acta Cryst. C52, 2939-2941.

Li, J. H., Yasay, G. D., Kan, S. T., Ohnmacht, C. J., Trainor, D. A., Boney, A. D., Heppner, T. J. \& Nelson, M. T. (1996). Drug Res. 46, 523-530.
Murugan, P., Shanmugasundaram, P., Ramakrishnan, V. T., Venkatachalapathy, B., Srividya, N., Ramamurthy, P., Gunasekaran, K. \& Velmurugan, D. (1998). J. Chem. Soc. Perkin Trans. 2, pp. 999-1003.

Nardelli, M. (1983). Comput. Chem. 7, 95-98.
Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Neidle, S. (1979). Prog. Med. Chem. 16, 151-221.
Prasad Krishna, B. N., Bansal, I., Das, P. \& Srivatsava, R. (1984). Curr. Sci. 53, 778-780.
Sankaranarayanan, R., Shanmuga Sundara Raj, S., Velmurugan, D. \& Fun, H.-K. (1999). Acta Cryst. C55, 1513-1514.

Sankaranarayanan, R., Velmurugan, D., Murugan, P. \& Ramasubbu, N. (1998). Acta Cryst. C54, 1534-1535.
Selladurai, S., Subramaninan, K. \& Ramakrishnan, V. T. (1990). J. Crystallogr. Spectrosc. Res. 20, 227-232.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Spek, A. L. (1990). Acta Cryst. A46, C-34.
Talacki, R., Carrel, H. L. \& Glusker, J. P. (1974). Acta Cryst. B30, 1044-1047.
Trivedi, S., Potterlee, L., McConvill, M. W., Li, J. H., Ohnmacht, C. J., Trainor, D. A. \& Kau, S. T. (1995). Mol. Path. Pharmacol. 88, 137-151.

Zsolnai, L. (1997). ZORTEP. University of Heidelberg, Germany.

